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Shallow water waves:
the depth of the water is much smaller than the wavelength of the
disturbance of the free surface.

A tsunami can have a wavelength in excess of 100 km and period on
the order of one hour. Because it has such a long wavelength, a
tsunami is a shallow-water wave
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Since the early 1970s, it has been frequently assumed that solitary (or
cnoidal) waves can be used to model some of the important features
of tsunamis approaching the beach and shoreline, and that these
theories, originating from the KdV equation, can de�ne the proper
input waves for physical or mathematical models of tsunamis
(Madsen, Fuhrman & Schä¤er (Journal of Geophysical research
2008))

Deep water waves (rouge wave): occur far out at sea, and are greater
than twice the size of surrounding waves, very unpredictable.
Focusing nonlinear Schrödinger equation.
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John Scott Russell (1808-1882, a Scottish civil engineer): solitary
wave
In 1834, while conducting experiments to determine the most e¢ cient
design for canal boats, he discovered a phenomenon that he described
as the wave of translation. In �uid dynamics the wave is now called
Russell�s solitary wave.
Scott Russell spent some time making practical and theoretical
investigations of these waves. He built wave tanks at his home and
noticed some key properties.

Recreation of a solitary wave on the Scott Russell Aqueduct on the
Union Canal.
(Photograph courtesy of Heriot-Watt University.)
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Many PDEs modeling shallow water waves corresponding to
integrable systems.

For example:

KdV equation:
ut � 6uux + uxxx = 0
(Korteweg and de-Vries (1895)),
BBM equation:
ut � uxxt + ux + uux = 0
(Benjamin, Bona and Mahony (1972)),
Camassa-Holm equation
ut � uxxt + 2κux + 3uux = 2uxuxx + uuxxx
(Camassa, Holm (1993), Fokas & Fuchssteiner (1981)),
Degasperis-Procesi equation
ut � uxxt + 3κux + 4uux = 3uxuxx + uuxxx
(Degasperis, Procesi (1999))
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Periodic plane waves in shallow water, o¤ the coast of Lima, Peru.
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What is the mechanism leading to the distinguished features of
solutions ?

Interaction of solitons: two traveling waves keep their shape and size
after interaction

Long time asymptotics: solutions behavior like solitons/oscillation
waves/decay fastly in di¤erent space-time domain.
In addition, 9 transition regions (Painlevé transcendents).
=) Direct / inverse scattering.
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Linear special functions: Airy, Bessel, Whittaker, Lagurre, Hermite,
hypergeometric function etc.....
Nonlinear special functions: Painlevé transcendents
Paul Painlevé: a French mathematician and politician. He served
twice as Prime Minister of the Third Republic: 12 September �13
November 1917 and 17 April �22 November 1925. (Wikipedia)
w 00 (z) = F (w ,w 0, z) , F : rational in w ,w 0, analytic in z .
)Find F such that the singularities (except poles) of the solutions
are "predictable", i.e., the singularities which depend on initial values
are only ploes.
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Painlevé (1900, 1902), Gambier (1910):

(P1) w 00 = 6w2 + z ,

(P2) w 00 = 2w3 + zw + α,

(P3) w 00 = (w 0)2

w � w 0
z +

αw 2+β
z + γw3 + δ

w ,

(P4) w 00 = (w 0)2

2w + 3
2w

3 + 4zw2 + 2
�
z2 � α

�
w + β

w ,

(P5) w 00 =
� 1
2w +

1
w�1

�
(w 0)2 � w 0

z +
(w�1)2
z 2

�
αw + β

w

�
+γw

z +
δw (w+1)
w�1 ,

(P6) w 00 = 1
2

� 1
w +

1
w�1 +

1
w�z

�
(w 0)2 �

� 1
z +

1
z�1 +

1
w�z

�
w 0

+w (w�1)(w�z )
z 2(z�1)2

n
α+ β z

w 2 +
γ(z�1)
(w�1)2 +

δz (z�1)
(w�z )2

o
.

How does nonlinear special functions (Painlevé transcendents) link
with mathematical physics ?
KdV equation (Ablowitz & Segur (Phys. D 1981))

Chang (CASTS-LJLL Workshop on Applied Mathematics and Mathematical Sciences)CH equation May 26-29, 2014 12 / 49



Camassa-Holm equation

Camassa-Holm (CH) equation from shallow water waves

ut + 2κux � uxxt + 3uux = 2uxuxx + uuxxx , x 2 R, t > 0. (CH)

u = u (x , t) : height of the water�s free surface about a �at bottom.
κ > 0 : constant (critical shallow water speed).
Camassa, Holm (1993), Fokas & Fuchssteiner (1981),
Global existence (Constantin & Escher (1998)),
periodic solution (Constantin & Mckean (1999)),
wave breaking (Constantin (2000)),
inverse scattering (Constantin (2000)),
stability of solitary wave (Constantin & Strauss (2002)).
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Long time asymptotics

Boutet de Monvel, Kostenko, Shepelsky and Teschl (SIMA, 2009):
Suppose u (x , t) is a classical solution of CH equation,
The asymptotics of solutions u (x , t) of (CH) can be divided into four
regions by considering the associated Riemann-Hilbert problem:
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Boutet de Monvel, Its and Shepelsky (SIMA, 2010):

Continuing the results in 2009, in the two transition regions:
(1) the region between 1st & 2nd sectors
(2) the region between 3rd & 4th sectors
the asymptotics of solutions is expressed by second Painlevé
transcendents.

w 00 (z) = 2w3 (z) + zw (z) .
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Question:

"How long" is the time such that the solution close to these
asymptotics ?

How does the initial data u (x , 0) in�uence the asymptotics form ?

) Construction of a speci�ed u (x , 0) such that the initial problem of
CH equation can be numerically evoluted.
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Direct and inverse scattering
Motivation: Fourier transform

Example: ut + ux + uxxx = 0
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KdV equation (Korteweg and de-Vries (1895)):

ut � 6uux + uxxx = 0, x 2 R, t > 0. (KdV)

u = u (x , t) : wave height above a �at bottom.
The Lax pair of KdV is

Lψ = �ψxx + u (x , t)ψ = λψ,

Pψ = 2 (2λ+ u)ψx � uxψ, for ψ satisfy Lψ = λψ.
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Scattering problem:
Given u (x , t) (t � 0), solve

Lψ = �ψxx + u (x , t)ψ = λψ

Suppose Z ∞

�∞
(1+ jx j)1+m ju (x , t)j dx < ∞.
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By Faddeev (1958):

(1) Discrete spectrum (λ = k2 < 0):

eigenvalues: k = iµj , j = 1, ...,N for some N 2 N, with
corresponding eigenfunction: ψj ,
Let γj (normalization coe¢ cients) be de�ned by

ψj (x) = γje
�µj x + o (1) as x ! ∞

(2) Continuous spectrum (λ = k2 > 0) : ψ̂ = ψ̂ (x , k) :
eigenfunction,

ψ̂ �
(
e�ikx + R (k) e ikx ; as x ! ∞,
T (k) e�ikx ; as x ! �∞.

where T (k) : transmission coe¢ cient, R (k) : re�ection coe¢ cient.
(jT (k)j2 + jR (k)j2 = 1.)
Scattering data: R (k) , µj , γj (j = 1, ...,N).
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By a series of inverse scattering theory, we have:

The number of discrete eigenvalues µj (j = 1, ...,N) determine the
number of solitary waves.

The appeareance of re�ection coe¢ cient R (k) make the oscillation
phenomenon occurs.
If R (k) � 0) pure soliton.
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Advantages of scattering problem compared with KdV equation:

1. Reduction of the di¤erential order:
2nd order derivative in Lψ = �ψxx + u (x , t)ψ / 3rd order derivative
in KdV equation.

2. (Lax1) is linear / KdV equation is nonlinear.

3. In Lψ = �ψxx + u (x , t)ψ, t is only a parameter.

4. Physical meaning to explain the appearence of soliton and long
time asymptotic behaviors for solutions.
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KdV results
Faddeev (1958), Zabusky and Kruskal (PRL, 1965).

Gardner, Greene, Kruskal and Miura (PRL, 1967).

Lax (CPAM 1968, 1975)

Deift and Trubowitz (CPAM 1979), Marchenko (1986), Beals, Deift
& Tomei (1988).

n-solitons:
Hirota (1971), Tanaka (1972, 73), Wadati & Toda (1972).

Asymptotic behaviors:
Zakharov & Manakov (1976), Ablowitz & Segur (1977),Segur &
Ablowitz (1981), Deift, Its & Zhou (1993), Deift & Zhou (1993),
Deift, Venakides & Zhou (1994), Grunert & Teschl (2009), et al...
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CH equation ut + 2κux � uxxt + 3uux = 2uxuxx + uuxxx
Let the momentum w (x , t) := u (x , t)� uxx (x , t) + κ.

Cauchy problem for CH equation:

We �nd the initial condition u (x , 0) s.t. w (x , 0) satisfy:
(i) w (x , 0) > 0, u (x , 0) : smooth, rapidly decreasing as jx j ! ∞,

(ii)
Z

R
(1+ jx j)1+m (jw (x , 0)� κj+ jwx (x , 0)j+ jwxx (x , 0)j) dx < ∞

(MIC)
for some m 2 N.

Existence of classical solutions: Constantin and Escher (1998).

Constantin (2001): w (x , t) > 0 for all t > 0.
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The Lax pair of CH (Camassa and Holm (1993)) is

Lψ =
1
w

�
�ψxx +

1
4

ψ

�
, (Lax1)

Pψ = �
� 1
2λ + u

�
ψx +

1
2uxψ,

for ψ satisfy Lψ = λψ.
(Lax2)

(ψt )xx = (ψxx )t i¤ CH equation holds.

Chang (CASTS-LJLL Workshop on Applied Mathematics and Mathematical Sciences)CH equation May 26-29, 2014 26 / 49



Lψ = 1
w (x ,t)

�
�ψxx +

1
4ψ
�
= λψ (Lax1)

Let

λ = 1
κ

� 1
4 + k

2
�
, ψ̃ (y) =

�
w (x ,t)

κ

� 1
4

ψ (x) ,

y = x �
R ∞
x

�q
w (r ,t)

κ � 1
�
dr

(Liouville transform), then (Lax1) can be transformed to

�ψ̃yy + q (y , t) ψ̃ = k2ψ̃

with
q (y , t) = wyy (y ,t)

4w (y ,t) �
3
16
(wy )

2(y ,t)
w 2(y ,t) +

κ�w (y ,t)
4w (y ,t) .

By (MIC) =) Z ∞

�∞
(1+ jy j)1+m jq (y , 0)j dy < ∞.

=) Scattering data: R̃ (k) , κj , γj (j = 1, ...,N) w.r.t. q (y , 0)
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Constantin (Proc. R. Soc. Lond. 2001): continuous spectrum,

Johnson (JFM, 2002), Lenells (JNMP, 2002),
Constantin and Lenells (JNMP, 2003), (Phys. Lett-A, 2003)
Yishen Li and Jin E. Zhang (Proc. R. Soc. Lond. 2004),
Constantin, Gerdjikov & Ivanov (IP, 2007) et al...

Only inverse scattering and the scattering data are assumed to be
known, + re�ectionless (only discrete spectrum exist)
=) construct the pure n- soliton solutions (n 2 N).
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Two-soliton:
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Three-soliton:
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Direct scattering problem:

Given a scattering data, what is the corresponding initial condition
u (x , 0) ?

To the author�s knowledge, non re�ectionless case i.e., the continuous
spectrum is non empty, has not been explored.
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Theorem:
Let 0 < q0 < 1, consider the CH equation subject to the following
initial condition

u (x , 0) =

8><>:
κA(A+1+log(ex�A))

ex , for x � log (1+ A) ,
κA(A+1+log((1+A)2e�x�A))

(1+A)2e�x
, for x < log (1+ A) .

where A := q0
1�q0 . The above initial condition in space-time domain

corresponds to the following scattering data in spectral domain:

R (k) =
�q0

q0 + 2ik
, µ1 =

q0
2
, γ1 =

r
q0
2
.
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Momentum w (x , t) := u (x , t)� uxx (x , t) + κ.

Initial momeutum

w (x , 0) =

8>><>>:
κ
�

1
1�Ae�x

�2
, for x � ln (1+ A) ,

κ
�

(1+A)2

(1+A)2�Aex

�2
, for x < ln (1+ A) .

=) w (x , 0) > 0.

Consider q0 = 1
2 , κ = 1 :
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At t = 0,

y = x �
Z ∞

x

 r
w (r , 0)

κ
� 1
!
dr

=

8<: ln (ex � A) , for x � ln (1+ A) ,

� ln
�
(1+ A)2 e�x � A

�
, for x < ln (1+ A) .

and �ψ̃yy + q (y , 0) ψ̃ = k2ψ̃ is

�ψ̃yy � q0δ (y) ψ̃ = k2ψ̃.

Drazin and Johnson (1989).
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Long time asymptotics

(1) Soliton region: c := x
t > 2+ C 8 small C > 0.

Let cj := 1
2( 14�µj)

, (j = 1, ...,N), ε > 0 small s.t. the intervals

[cj � ε, cj + ε] are disjonit & [cj � ε, cj + ε] � (2,∞) 8j .
If
�� x
t � cj

�� < ε for some j :

u (x , t) � 32κµ2j

(1�4µ2j )
2

α(y(x�κcj t�ξ j))

(1+α(y(x�κcj t�ξ j)))
2
+

16µ2j
1�4µ2j

α(y(x�κcj t�ξ j))
.

where

α (y) =
γ̂2j
2µj
e�2µj y , x = y + log

1+α(y )
1+2µj
1�2µj

1+α(y )
1�2µj
1+2µj

,

γ̂j = γjΠ
N
i=j+1

µi�µj
µi+µj

, ξ j = 2∑N
i=j+1 log

1+2µi
1�2µi

.

If
�� x
t � cj

�� � ε for all j : u (x , t) � 0.
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(2) First oscillatory region: 0 � c := x
t > 2� C .

u (x , t) � c (0)1p
t
sin
�
c (0)2 t + c (0)3 log t + c (0)4

�
where c (0)m (m = 1, ..., 4) are functions of c , which are determined by
u0 (x) in terms of the corresponding R(k).

In particular, c (0)1 = �c5 (c)
q
�1
2π log (1� R (c6 (c)))

2

where c5 (c) , c6 (c) are functions of c .

(3) Second oscillatory region: �14 + C < c =
x
t < 0.

u (x , t) �
1

∑
j=0

c (j)1p
t
sin
�
c (j)2 t + c

(j)
3 log t + c (j)4

�
where c (j)m (m = 1, ..., 4, j = 0, 1) are functions of c with c (j)1 have

the forms similar to c (0)1 .

(4) Fast decay region: c = x
t <

�1
4 � C .

u (x , t) � 0.
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For
�� x
t � 2

�� t 23 < C with any C > 0,
u (x , t) = �

� 4
3

� 2
3 1

t
2
3

�
w2 (z)� w 0 (z)

�
+O

�
t�1
�
,

where z = 6
�1
3
� x
t � 2

�
t
2
3 ,

For
�� x
t +

1
4

�� t 23 < C with any C > 0,
u (x , t) = 12

1
6

t
1
3
w1 (z1) sin

�
�3
p
3

4 t � 3
5
6

2
4
3
z1t

1
3 + ∆

�
+O

�
t�

2
3

�
,

where z1 = �
� 16
3

� 1
3
� x
t +

1
4

�
t
2
3 , ∆ as a function depends on u (x , 0).

w (z) & w1 (z): the real-valued, non-singular solution of (P2)
equation

w 00 (z) = 2w3 (z) + zw (z) . (P-II)

with w (z) � �R (0)Ai(z) as z ! ∞, w1 (z) �
���R �p32 ����Ai(z) as

z ! ∞,
����R �p32 ���� < 1� .
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Numerical simulation

Solve CH equation with

u (x , 0) =

8><>:
κA(A+1+log(ex�A))

ex , for x � log (1+ A) ,
κA(A+1+log((1+A)2e�x�A))

(1+A)2e�x
, for x < log (1+ A) .
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t = 80 :
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t = 40 :
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Idea to �nd u (x , 0): Constantin�s approach:

Constantin (2001 RSPA):

Find the positive solution C = C (y , t) from

Cyy = C
�
q (y , t) +

1
4

�
� κ

4C 3
, lim
jy j!∞

C (y , t) = κ
1
4 .

then w (y , t) = C 4 (y , t).

Find change of variable between y and x by solving

dy
dx
=

�
w (y , t)

κ

� 1
2

, lim
x!∞

(y (x)� x) = 0.

Let the solution be y = ŷ (x , t) .

w (x , t) = w (ŷ (x , t) , t) .
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Find the positive solution C = C (y , 0) from

Cyy = C
�
q (y , 0) + 1

4

�
� κ

4C 3 , limjy j!∞ C (y , t) = κ
1
4

with q (y , 0) = q (y , 0) = �q0δ (y) .
then w (y , 0) = C 4 (y , 0) = κ

�
Ae�jy j + 1

�2
.

Find change of variable between y and x by solving

dy
dx =

�
w (y ,0)

ω

� 1
2
1+ Ae�jy j, limx!∞ (y (x)� x) = 0.

The solution is

y =

8<: log (ex � A) , for x � log (1+ A) ,

� log
�
(1+ A)2 e�x � A

�
, for x < log (1+ A) .

Solve w = u � uxx + κ, i.e., wκ uyy +
1
2κwyuy � u = κ � w .
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Open problem

Computation of second Painlevé region.

Boutet de Monvel et al. don not consider the "collisionless shock"
region

C�1 <
�
2� x

t

�� t
log t

� 2
3

< C , C > 1.

(which occurs when R (0) = �1) present between the 1st Painlevé
region and the 1st oscillatory region.
Thisi is our case!
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Boutet de Monvel and Shepelsky
(Ann. Inst. Fourier (Grenoble), 2009):
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Focusing nonlinear Schrödinger equation:

iεΨt +
ε2

2 Ψxx + jΨj2 Ψ = 0, x 2 R, t > 0.

q (x , 0) = q0 (x) =

(
0, x � 0,
Ae�2iBx , x > 0.

where A > 0, B 2 R : constants.
Boutet de Monvel, Kotlyarov and Shepelsky (IMRN 2011): 3 regions
of its long time asymptotics:

Painlevé transcendents ?
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Conclusion

We consider the direct scattering analysis of the Camassa-Holm
equation with a speci�ed initial condition.

Both of the continuous and discrete spectrum cases and the
scattering data for the initial condition are derived explicitly.

The re�ection coe¢ cient is non zero.

The numerical simulation directly from CH equation looks match the
results by Boutet de Monvel (2009), further numerical computations
such as the Painlevé region and collisionless shock region are needed.
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Thanks for Your Attention.
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